Constructive Compact Linear Mappings

نویسنده

  • HAJIME ISHIHARA
چکیده

In this paper, we deal with compact linear mappings of a normed linear space, within the framework of Bishop's constructive mathematics. We prove the constructive substitutes for the classically well-known theorems on compact linear mappings: T is compact if and only if T* is compact; if S is bounded and if T is compact, then TS is compact; if S and T is compact, then S+ T is compact.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

متن کامل

Sequential Continuity of Linear Mappings in Constructive Mathematics

This paper deals, constructively, with two theorems on the sequential continuity of linear mappings. The classical proofs of these theorems use the boundedness of the linear mappings, which is a constructively stronger property than sequential continuity; and constructively inadmissable versions of the Banach-Steinhaus theorem.

متن کامل

Fuzzy almost generalized $e$-continuous mappings

In this paper, we introduce and characterize the concept of fuzzy almost generalized $e$-continuous mappings. Several interesting properties of these mappings are also given. Examples and counter examples are also given to illustrate the concepts introduced in the paper. We also introduce the concept of fuzzy $f T_{frac{1}{2}}e$-space, fuzzy $ge$-space, fuzzy regular $ge$-space and  fuzzy gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006